

BIOORGANIC CHEMISTRY

Volume 34, Number 5, October 2006

Contents

www.elsevier.com/locate/bioorg

Synthesis, structure, and hydrolytic reaction of *trans*-dichlorobis(diethanolamine-N) palladium(II) with N-acetylated L-histidylglycine dipeptide

pp 225-234

Zorica D. Petrović,* Miloš I. Djuran,* Frank W. Heinemann, Snežana Rajković, Srećko R. Trifunović

$$\begin{array}{c} O \\ CH_3-C-NH-CH-C-NH-CH_2-C-OH \\ CH_2 \\ HN \\ MeCO-His-Gliv \\ \end{array} \begin{array}{c} O \\ O \\ CH_3-C-NH-CH-C-OH \\ CH_3-C-NH-CH-C-OH \\ CH_3-C-NH-CH-C-OH \\ CH_2 \\ HN \\ MeCO-His \\ \end{array} \begin{array}{c} O \\ O \\ CH_2 \\ H_2N-CH_2-C-OH \\ HN \\ MeCO-His \\ \end{array} \begin{array}{c} O \\ O \\ CH_2 \\ HN \\ MeCO-His \\ \end{array}$$

The reaction of PdCl₂, or K₂PdCl₄, with diethanolamine (DEA), in the molar ratio 1:2, affords the *trans*-[PdCl₂(DEA)₂] complex. X-ray structure analysis of this complex confirmed the formation of the *trans*-isomer. In the hydrolytic reaction between the *trans*-[PdCl₂(DEA)₂] or the *trans*-[Pd(H₂O)₂(DEA)₂]²⁺ complex and MeCOHis-Gly dipeptide, cleavage of the amide bond involving the carboxylic group of histidine was observed.

DNA sequence-directed assembly of two peptide bioconjugates

pp 235-247

M. Thompson*

Peptide-intercalator bioconjugates are composed of the polypeptide from a DNA-binding protein and an intercalating fluorescent dye. Here, DNA template-directed assembly of two bioconjugate probes was examined by steady-state fluorescence resonance energy transfer and time-resolved single photon counting.

$$X = 0,S$$
 Peptide

Synthesis, conformational characteristics and anti-influenza virus A activity of some 2-adamantylsubstituted azacycles

pp 248-273

Despina Setaki, Dimitris Tataridis, George Stamatiou, Antonios Kolocouris, George B. Foscolos,* George Fytas,* Nicolas Kolocouris, Elizaveta Padalko, Johan Neyts, Erik De Clercq

Several compounds between 2-(2-adamantyl)piperidines, 3-(2-adamantyl)-pyrrolidines and 2-(2-adamantyl-methyl)piperidines were potent against influenza A H₃N₂ virus. The diamine derivatives **21e–g** and particularly **35a–c** possessing three pharmocophoric groups, the adamantanyl and the two amine groups, exhibited high potency. Parent structures **11** and **27** adopt a fixed *trans* conformation around C2—C2′ bond. The different shape and distance between nitrogen and adamantyl pharmacophoric groups of the bioactive parent amines **11**, **27**, and **30** suggest that the influenza virus A receptor can accommodate different in size and orientation lipophilic cages.

11,13a,b,15 27,21a-g

$$R = H, \text{ alkyl}, \text{CH}_2\text{CH}_2\text{NR}_2$$

30.32a-c.35a-d

Artificial ribonucleases: From combinatorial libraries to efficient catalysts of RNA cleavage

N. Kovalev, E. Burakova, V. Silnikov, M. Zenkova,* V. Vlassov

Inhibition of cancer cell growth by cyclin dependent kinase 4 inhibitors synthesized based on the structure of fascaplysin

pp 287-297

Sachin Mahale, Carine Aubry, Paul R. Jenkins, Jean-Didier Maréchal, Michael J. Sutcliffe, Bhabatosh Chaudhuri*

CA199, a tryptamine analogue of fascaplysin, is a specific inhibitor of Cdk4-D1 in enzyme assays, blocks cancer cells at G_0/G_1 and prevents pRb hyperphosphorylation, but does not bind or intercalate DNA like fascaplysin.

CA199

Review

Structure-activity relationship of for-L-Met-L-Leu-L-Phe-OMe analogues in human neutrophils

pp 298-318

Giorgio Cavicchioni,* Anna Fraulini, Sofia Falzarano, Susanna Spisani

Neutrophils migrate to infected tissues along a concentration gradient of chemoattractant molecules, e.g. for-Met-Leu-Phe-OMe (fMLP-OMe). The aim of the studies reported herein was twofold: to clarify the mechanisms whereby the ligand hooks its specific receptor and to verify the biological consequences arising from every possible variations on the fMLP-OMe prototype.

Abstracted/Indexed in SCOPUS®. Full text available on ScienceDirect®.

Bioorganic Chemistry has no page charges. For a full and complete Guide for Authors, please refer to www.elsevier.com/framework_products/promis_misc/bioorggfa.pdf.